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Fig. 1. One of the applications of the proposed end-to-end computational camera design paradigm is achromatic extended depth of field. When capturing an

image with a regular singlet lens (top left), out-of-focus regions are blurry and chromatic aberrations further degrade the image quality. With our framework,

we optimize the profile of a refractive optical element that achieves both depth and chromatic invariance. This element is fabricated using diamond turning

(right) or using photolithography. After processing an image recorded with this optical element using a simple Wiener deconvolution, we obtain an all-in-focus

image with little chromatic aberrations (top center). Point spread functions for both the regular lens and the optimized optical element are shown in the

bottom. In this paper, we explore several applications that demonstrate the efficacy of our novel approach to domain-specific computational camera design.

In typical cameras the optical system is designed first; once it is fixed, the

parameters in the image processing algorithm are tuned to get good image

reproduction. In contrast to this sequential design approach, we consider

joint optimization of an optical system (for example, the physical shape of the

lens) together with the parameters of the reconstruction algorithm. We build

a fully-differentiable simulationmodel that maps the true source image to the

reconstructed one. The model includes diffractive light propagation, depth

and wavelength-dependent effects, noise and nonlinearities, and the image

post-processing. We jointly optimize the optical parameters and the image

processing algorithm parameters so as to minimize the deviation between the
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true and reconstructed image, over a large set of images. We implement our

joint optimization method using autodifferentiation to efficiently compute

parameter gradients in a stochastic optimization algorithm. We demonstrate

the efficacy of this approach by applying it to achromatic extended depth of

field and snapshot super-resolution imaging.
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1 INTRODUCTION

The visual systems of animals are often highly adapted to their

environments [Land and Nielsson 2002]. In spite of being used for
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a diverse range of applications, digital imaging systems, on the

other hand, have been engineered to mimic only one of these sys-

tems: the human eye. While such a general-purpose approach to

imaging is sometimes successful, it leaves an important question

unanswered: What is the optimal camera design for a given task? To

address this question, domain-specific computational cameras have

emerged over the last two decades [Nayar 2006]. By co-designing

camera optics and image processing algorithms, computational cam-

eras have the potential to optimize task-specific performance over

conventional, general-purpose imaging systems in a wide range of

applications.

To date, computational cameras have demonstrated new imag-

ing capabilities, such as extended depth of field [Cossairt and Na-

yar 2010; Cossairt et al. 2010; Dowski and Cathey 1995], super-

resolution [Ben-Ezra et al. 2004], and high dynamic range [De-

bevec and Malik 1997; Mann et al. 1995] imaging. Optical elements

have also been optimized, for example to localize microscopic point

emitters in a 3D volume via point spread function (PSF) engineer-

ing [Pavani et al. 2009; Shechtman et al. 2014] or to optimize the

focusing performance of a diffractive optical element across the

color spectrum [Peng et al. 2016]. Yet, all of these approaches are

either heuristic or use some proxy metric on the PSF rather than

considering the image quality after post-processing. Without a true

end-to-end approach for jointly optimizing parameters of the image-

forming optics and the algorithm processing the data, being able

to find an optimal computational camera for a given task remains

elusive.

What does optimizing a domain-specific computational camera

entail? First, the task has to be defined and appropriate quality

metrics devised to assess a camera’s performance. Generative im-

age processing tasks include denoising, deconvolution, or other

forms of image reconstruction; their quality is often measured as

peak signal-to-noise-ratio (PSNR). Discriminative tasks, on the other

hand, would use a very different quality metric, such as classifica-

tion accuracy for image classification. Second, it may be helpful to

characterize the input data for a specific task. Natural images, for

example, follow certain statistics that can be exploited as priors for

generative tasks. But it may not always be obvious what good priors

for domain-specific datasets actually are. Third, post-processing

algorithms may vary drastically between different tasks or even for

the same task, but in different settings. Conventional approaches to

computational camera design, such as PSF engineering, do not offer

the flexibility of addressing all of these challenges simultaneously.

In this paper, we introduce a new paradigm for computational

camera design: end-to-end optimization of a refractive or diffrac-

tive optical element with respect to the output of a reconstruc-

tion algorithm, using stochastic gradient methods. We build a fully-

differentiable wave optics image formation model that is used to

jointly optimize the optical parameters and the image processing

algorithm parameters for domain-specific computational cameras.

Specifically, our contributions are

• We introduce a framework for end-to-end optimization of an

optical element with respect to the output of a reconstruction

algorithm, using stochastic gradient methods. The framework

includes a wave optics image formation model, object depth

and wavelength-dependent effects, sensor noise and nonlin-

earities, and the image processing. The source code is publicly

available 1.

• We validate this framework in simulation for the applications

of achromatic extended depth of field and snapshot super-

resolution imaging.

• We fabricate the optimized optical elements, using photolithog-

raphy for diffractive elements and diamond turning for re-

fractive lenses, and verify that experimental results from a

prototype camera setup match the simulations.

Scope. In principle, the proposed framework for end-to-end op-

timization of optics and image processing generalizes to various

low-level and high-level algorithms. Deep convolutional neural net-

works, for example, could be used to optimize the lens of a camera

tailored to image classification or other high-level tasks. Exploring

this large space of application- and domain-specific computational

cameras is an exciting vision towards which we take first steps in

this paper. We believe that the insights provided by our work on

developing fully-differentiable wave optics image formation models,

inverting them robustly with tools like TensorFlow, and actually

fabricating the optimized optical elements are invaluable for the

emerging field of computational optics.

2 RELATED WORK

Computational Cameras. Much work on computational photogra-

phy has focused on improving basic capabilities of a camera, such as

depth of field [Cossairt and Nayar 2010; Cossairt et al. 2010; Dowski

and Cathey 1995], dynamic range [Debevec and Malik 1997; Mann

et al. 1995; Reinhard et al. 2005; Rouf et al. 2011], and image reso-

lution [Ben-Ezra et al. 2004; Brady et al. 2012; Cossairt et al. 2011].

Computational photography has also been used for tasks as diverse

as motion deblurring [Raskar et al. 2006], defocus deblurring [Zhou

et al. 2009; Zhou and Nayar 2009], depth estimation [Levin et al.

2007, 2009], multispectral imaging [Wagadarikar et al. 2008], light

field imaging [Marwah et al. 2013; Ng et al. 2005; Veeraraghavan

et al. 2007], and lensless imaging [Antipa et al. 2016; Asif et al. 2017].

Many of these approaches use either optical coding, multiplexing,

burst photography [Hasinoff et al. 2016], or multi-shot approaches

to capture high-dimensional visual data [Wetzstein et al. 2011].

The proposed end-to-end optimization framework could be ap-

plied to many of these applications, as it introduces a general design

paradigm for computational cameras that optimizes directly for the

post-processed output with respect to a chosen quality metric and

domain-specific dataset.

Deep Computational Photography. In computer vision, natural

language processing, and many other fields, the emergence of deep

learning has lead to rapid progress in a number of challenging tasks

and state-of-the-art results for well-established problems. The com-

putational photography community too is at the cusp of adopting

tools from the deep learning community, such as convolutional neu-

ral networks. For example, high dynamic range image estimation

from a single low dynamic range photograph was recently demon-

strated to achieve unprecedented image quality [Eilertsen et al. 2017;

1https://vsitzmann.github.io/deepoptics
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Kalantari and Ramamoorthi 2017; Zhang and Lalonde 2017]. The

task of super-resolving a single image has also been approached

via deep learning [Dong et al. 2016b; Shi et al. 2016]. Finally, it was

recently shown that it is possible to learn the mapping from a single

image to a light field [Srinivasan et al. 2017] and to produce light

field video clips from a hybrid camera [Wang et al. 2017].

All of these approaches have demonstrated state-of-the-art results

for various computational photography applications. Yet, most of

them only consider the algorithm processing the data. We go one

step further and ask whether it is possible to optimize the co-design

of optics and image processing for domain-specific computational

cameras in an end-to-end fashion. Although we demonstrate the

efficacy of our approach with applications that rely on relatively

simple reconstruction algorithms, in principle, our approach could

also be used to optimize optical elements leveraging more advanced

deep computational photography algorithms.

Optimizing Optical Elements. Optimizing the parameters of opti-

cal elements and point spread function engineering are well-known

techniques in the computational optics and visual computing com-

munities. Optimized optical system parameters have proven useful

for extended depth of field [Dowski and Cathey 1995; Flores et al.

2004; Liu 2007], motion [Raskar et al. 2006] and defocus [Zhou and

Nayar 2009] deblurring, 4D light field imaging [Marwah et al. 2013],

super-resolved localization microscopy [Pavani et al. 2009; Shecht-

man et al. 2014], and full-color imagingwith diffractive optics [Heide

et al. 2016; Peng et al. 2016]. Optimization of optical models has also

been proposed for multi-element systems to either arrive at novel

arrangements of off-the-shelf lenses [Sun et al. 2015] or to allow

precise calibration of models [Shih et al. 2012] of these systems.

Two observations remain. First, previously-proposed optimization

approaches of optical elements are mainly based on heuristic cost

functions applied to the PSFs, which may be a feasible approach

for image deconvolution but it remains unclear how the PSF of a

camera affects higher-level computer vision tasks such as image

classification; second, although image processing is applied to the

recorded images to remove residual aberrations or perform some

inference tasks, the post-processing algorithm is usually indepen-

dent of the optics design and fails to provide significant insights to

guide it.

We also optimize the point spread function of an optical sys-

tem, but do so in an end-to-end manner using a data-driven ap-

proach that applies a cost function on the reconstructed image,

not on the PSF. Our approach is motivated by recent advances in

hardware, autodifferentiation tools, and optimization algorithms

for deep learning. While some recent work investigates joint opti-

mization of either binary masks or color filter arrays with neural

network post-processing for video compressed sensing or demo-

saicking [Chakrabarti 2016; Iliadis et al. 2016], they do not con-

sider the optimization of phase-modulating optical elements such as

lenses and do not consider diffraction in their forward model. With

this work, we thus take first steps towards utilizing the full potential

of end-to-end optimization for computational camera design.

Achromatic Extended Depth of Field. Extended depth of field (EDOF)

is a classic application of computational imaging. An extension is

the design of a single optical element that combines EDOF with

achromaticity, yielding all-in-focus images with minimal chromatic

aberrations. Depth and wavelength are closely coupled in the im-

age formation, such that the seminal wavefront-coding approach

to EDOF, the cubic phase plate [Dowski and Cathey 1995], dis-

plays increased achromaticity, and achromatic elements, such as the

diffractive achromat [Peng et al. 2016], display some extended depth

of field. However, this duality breaks down at the extremes of either

wavelength or depth. One possible solution are metalenses, which

have recently enabled the fabrication of single ultrathin optical ele-

ments that encode wavelength-dependent phase patterns onto the

incoming light, thereby achieving physical achromaticity without

the need for post-processing [Chen et al. 2018; Yang et al. 2017]

and, in combination with a digital filter, achromatic EDOF [Colburn

et al. 2018]. However, metalenses are currently difficult and costly

to fabricate, and usually only support small numerical apertures

with low light efficiency. While compound systems are well-known

for their ability to correct chromatic aberrations, they increase the

device footprint. Hybrid elements for achromatic EDOF have been

proposed [Flores et al. 2004; Liu 2007] as a compromise that reduces

chromatic aberrations by combining a single diffractive and a single

refractive optical element, but add complexity to the manufacturing

process.

With this work, we propose a novel perspective of joint optimiza-

tion of a single diffractive or refractive element with a deconvolu-

tion post-processing step, affording achromatic EDOF with standard

diamond-turning or lithography manufacturing techniques, with-

out increasing device footprint, and with no hand-crafted losses

applied to the PSF. We note that this approach does not preclude

more sophisticated optical elements which may offer more degrees

of freedom in the optics design. Future work may thus extend the

proposed end-to-end optimization framework to other optical ele-

ments.

3 END-TO-END OPTIMIZATION OF OPTICS AND

RECONSTRUCTION

In the following, we derive a wave-based image formation model

that accounts for diffraction and wavelength-dependent effects

when imaging natural scenes. We assume spatially incoherent light,

meaning that light reflected from an object point interferes with

other light reflected from that same point along a different path, but

that it does not interfere with light from other points in the scene.

The image formation model is based on Fourier optics [Goodman

2017], and we show how to efficiently integrate it into the workflow

of modern deep learning tools.

3.1 Image Formation Model

3.1.1 Wave-based Point Spread Function Model. Consider a sin-

gle refractive or diffractive optical element, such as a thin lens. This

element delays the phase of a complex-valued wave field propor-

tionally to its thickness h

ϕ
(

x ′,y′
)

=

2π∆n

λ
h
(

x ′,y′
)

. (1)

Here, λ is the wavelength and ∆n is the refractive index difference

between air and the material of the optical element.
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Fig. 6. Experimental results for achromatic extended depth of field imaging with DOEs. Left: an image captured through a Fresnel lens. Center, right: an

image captured through a diffractive optical element (DOE) optimized with the proposed framework without (center) and with (right) Wiener deconvolution

as a post-processing step. Over the scene depth range of 0.5m to 2m, the Fresnel lens displays significant out-of-focus blur at the extremes of the depth range

and further suffers from significant chromatic aberrations. In contrast, the proposed optical element succeeds in focusing a wide range of depths for all three

color channels, leading to an all-in-focus scene with little chromatic aberrations.

best, as the diffractive element still suffers from some degree of

residual chromatic aberrations that are typical for diffraction-based

elements. Nevertheless, the diffractive element also significantly

outperforms baseline approaches. Generally, the PSFs found by the

optimization were (approximately) invertible but not necessarily

focused. This is intuitive because the cost function we optimized

only considers the final reconstructed image, not the PSFs or images

formed on the sensor.

In addition to these qualitative results, we also show a detailed

quantitative evaluation implemented on the 100 test images of the

BSDS500 dataset [Martin et al. 2001] in Table 1. For this purpose,

we average the mean squared error (MSE) of reconstructions over

all five target depths and three target wavelengths for each indi-

vidual scene. Table 1 outlines peak signal-to-noise ratios (PSNR)

computed on the average MSE per scene for the two examples of

Figure 5 and also the average PSNR of all 100 test scenes. All simu-

lated sensor images include 0.2% Gaussian noise and the deconvolu-

tion for all methods is performed with the respective wavelength-

dependent PSF calibrated at 1 m. Our method significantly outper-

forms other approaches for the task of simultaneous depth and

wavelength-invariant imaging with a single optical element. Simi-

larly, our method outperforms all baselines for intermediate depths

(0.585, 0.835, 1.5 and 3m) that were not explicitly optimized for, as

well as for a higher noise level of 2%. Additional sensor images,

deconvolved results, PSFs for all settings, as well as the quantitative

results for the higher noise level of 2% and intermediate depths are

shown in the Supplemental Information.

4.2 Experimental Results

To demonstrate the practical viability of the proposed, end-to-end

optimized optics, we fabricate an optimized diffractive optical ele-

ment and also a reference Fresnel lens with 4-layer photolithography

and another refractive element using diamond turning. Figure 1 com-

pares an image taken through a conventional refractive lens to an

image taken through the optimized diamond-turned element, which

is subsequently deconvolved usingWiener deconvolution. The scene

covers a depth range from 0.5m (the elephant sculpture) to 1.5m

(the textbook). Both optical elements share the same f-number. The

benefits of the proposed optical design are clearly visible, with the

Scene 1 (vase) Scene 2 (wolf) Avg. 100 scenes

Fresnel 23.87 20.40 17.95

MFL 24.22 20.73 18.32

CPP 24.38 20.70 18.33

DA 26.74 22.31 20.20

Hybrid 25.50 21.07 18.92

End-to-end with h 29.57 24.70 22.69

End-to-end with Z 31.13 26.40 24.30

Table 1. Quantitative comparison of achromatic extended depth of field.

We report PSNR values in dB for a Fresnel lens, a multi-focal lens (MFL),

the cubic phase plate combined with the phase of a focusing lens (CPP),

a diffractive achromat (DA), the diffractive-refractive hybrid lens (Hybrid),

and the proposed method optimized for a height map h or for a Zernike

basis representation Z . The proposed method outperforms the best alter-

native approach by a large margin, on average 4.1 dB for the Zernike basis

representation.

whole scene perfectly sharp, where the conventional lens displays

significant blurring for all but its focus plane of 1m.

Figure 6 compares an image captured through a diffractive Fres-

nel lens with the optimized DOE. Again, the scene depth ranges

from 0.5m (the cherries) to 2.0m. The optimized DOE succeeds

in displaying the complete image in-focus, where the Fresnel lens

displays significant blur at the extremes of the depth range. Further-

more, the Fresnel lens displays significant chromatic aberrations

(being only optimized for a single wavelength), while the proposed

design was optimized for three wavelengths of the visible spectrum

and thus significantly reduces chromatic aberrations. We also show

a demonstration of video-rate processing of the optimized refractive

element over a continuous depth range in the supplemental video.

5 SNAPSHOT SUPER-RESOLUTION IMAGING

Optical zoom in cameras is typically achieved by increasing the

distance between lens and sensor to magnify the recorded image. In

many scenarios, such as cell phone cameras, it may be impossible to

further increase the device form factor of the camera, making optical

zoom impractical. Digital zoom is an alternative, but this approach

uses either simple upsampling methods in software or deep learning-

based single-image super-resolution methods to hallucinate image

details that were not actually recorded. Another approach is the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 114. Publication date: August 2018.
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Fig. 7. Optimized phase profile of diffractive optical element (left) for super-

resolution. The phase profile appears to create three interleaved lens profiles;

one of these is shown in the closeup 3D rendering (center top). Note that

the middle portion of the DOE is not perfectly flat (center bottom). These

variations are minute and can be considered noise in the optimization that

gets blurred out in the point spread function. We also show a photograph

of the manufactured DOE with a caustic that shows the three peaks, which

create multiple image copies on the sensor (right, with PSF inset, blurred to

increase peak radius for better visibility).

addition of extra camera modules or a single sensor with multiple

subapertures. However, this makes the camera more costly, bulky, or

decreases the diffraction-limited resolution. We ask whether it may

be possible to design a single lens that maintains a constant physical

footprint while facilitating image super-resolution. In this scenario,

the standard non-zoom lens is swapped laterally with an optimized

ultrathin lens. Post-processing then achieves computational zoom,

while the sensor-lens distance remains constant.

To investigate this possibility, we use the proposed end-to-end

optimization framework to design a diffractive lens that optically

encodes information in a sensor image that may make it possible

to recover a 2× super-resolved image by solving Equation 7. We

assume a monochromatic sensor and single wavelength images

with λ = 550 nm, located at optical infinity. While the framework

generalizes to multiple wavelengths in a straight-forward manner,

we choose a monochromatic sensor to simplify analysis of experi-

mental results. We sample images from a dataset of 30 images [Xu

et al. 2014], converted from RGB to monochrome. The simulated

optical setup matches that of our prototype (see Section 6) and

entails an aperture diameter of 5mm and a propagation distance

of z = 35.5mm between optical element and sensor. We use 5 it-

erations of the conjugate gradient method for the reconstruction

(which is not closed form due to pixel integration, cf. Eq. 6). We

fix the regularization γ = 2 × 10−4 and optimize for a Fourier coef-

ficient representation of the height map h. Detailed optimization

parameters can be found in Appendix A.2.

5.1 Evaluation in simulation

The optimized optical height profile along with a photograph of

the fabricated element casting caustic patterns that resemble the

PSF are shown in Figure 7. We observe that the optimized element

resembles the shape of three separate lenses, which is verified by

the caustic patterns consisting of several strong peaks. Such a PSF,

when convolved with an image, results in several optical copies

of the input image on the sensor, as seen in Figure 9 (top right)

for an experimentally captured image. It is intuitive that the opti-

mization could result in such a PSF, because it is well-known from

early work on super-resolution [Ben-Ezra et al. 2004] that multiple

sub-pixel-shifted images can be used to recover a super-resolved

image. The proposed end-to-end optimization achieves the same

result in a single shot by multiplexing these sub-pixel-shifted image

copies on the sensor. We note that while the optimized phase profile

is intuitive, the optimization determined shape, number, and place-

ment of these sub-PSFs without supervision, in a manner that would

minimize interference of the three sub-PSFs as well as respecting

manufacturing constraints, while optimizing for the fidelity of the fi-

nal, reconstructed image. These would traditionally be hand-crafted

parameters in a large design space.

Even the simple conjugate gradient based reconstruction method

in the framework is capable of recovering the target image very well,

as shown in Table 2 and Figure 8. Note that our simulations assume

that only a part of the sensor image is used for conventional imaging,

whereas the PSF optimization has sufficient degrees of freedom to

spread the recorded signal out over a larger area on the sensor, thus

creating non-overlapping copies of the image. The image resolution

in these simulations are also limited by the pixel size of the sensor,

not the diffraction limit. Sub-diffraction limited imaging is not pos-

sible with the proposed approach; although image copies could also

be created with a diffraction-limited optical system, the respective

copies would contain the exact same image information. Similar

to previous super-resolution methods [Ben-Ezra et al. 2004], our

method relies on aliasing in these optical copies, which is created

by sub-pixel shifts.

For the simulated result shown in Figure 8, we downsample the

target image by a factor of 2 in each dimension using area interpo-

lation. Bicubic upsampling is not capable of restoring fine image

details. We also apply a state-of-the art deep learning approach for

single-image super-resolution [Lai et al. 2017] to the low-resolution

image. This method hallucinates high-frequency details, but it is not

capable of adequately restoring image details, which our method

is able to recover. We verify that these results generalize to other

images with the extensive quantitative evaluation summarized in

Table 2. Values for peak signal-to-noise ratio (PSNR) and structural

similarity index (SSIM) of all approaches other than ours are adopted

from Lai et al. [2017]. We also show additional qualitative compar-

isons of these methods, as well as an additional comparison with a

naive multiplexing baseline, in the Supplemental Information. The

optimized diffractive optical system outperforms the state-of-the-art

in SSIM on all datasets, and on PSNR for the Set14 and BSDS100

datasets. Deep learning-based super-resolution approaches achieve

higher PSNR on the Urban100 dataset, which features many images

with regular texture that can be easily interpolated using learned

image priors.

5.2 Experimental Results

To verify that we can achieve super-resolution in practice, we fabri-

cated the diffractive optical element (DOE) shown in Figure 7 using

photolithography. Details on the fabrication process are found in

Section 6 and in the Supplement. An image captured through this

DOE is shown in Figure 9 (top right). This photograph clearly shows

the individual image copies, as well as a slight haze due to imper-

fections in the fabrication and limited diffraction efficiency of the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 114. Publication date: August 2018.
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Ground Truth Bicubic LapSRN Optimized DOE

Fig. 8. Qualitative comparison of 2× super-resolution imaging in simulation.

We downsample a target image (left) by a factor of 2 in each dimension.

Neither bicubic upsampling nor the state-of-the-art single-image super-

resolution method proposed by Lai et al. [2017] (LapSRN) achieve a high

image quality for the reconstruction. Similar to other single-image super-

resolution methods, LapSRN hallucinates high-frequency content and, in

the process, introduces aliasing. Our approach optimizes a diffractive opti-

cal element (DOE) that, together with a simple conjugate gradient solver,

recovers a super-resolved image with a high quality.

Set14 BSDS100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 30.34/0.870 29.56/0.844 26.88/0.841
A+ [Timofte et al. 2014] 32.40/0.906 31.22/0.887 29.23/0.894
SRCNN [Dong et al. 2016b] 32.29/0.903 31.36/0.888 29.52/0.895
FSRCNN [Dong et al. 2016a] 32.73/0.909 31.51/0.891 29.87/0.901
SelfExSR [Huang et al. 2015] 32.44/0.906 31.18/0.886 29.54/0.897
RFL [Schulter et al. 2015] 32.36/0.905 31.16/0.885 29.13/0.891
SCN [Wang et al. 2015] 32.42/0.904 31.24/0.884 29.50/0.896
VDSR [Kim et al. 2016a] 32.97/0.913 31.90/0.896 30.77/0.914
DRCN [Kim et al. 2016b] 32.98/0.913 31.85/0.894 30.76/0.913
LapSRN [Lai et al. 2017] 33.08/0.913 31.80/0.895 30.41/0.910
Optimized DOE 33.88/0.933 32.84 /0.933 30.39/0.919

Table 2. Quantitative comparison of 2× super-resolution methods. Peak

signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values

comparing a number of different approaches for several datasets are adopted

from Lai et al. [2017]. Our end-to-end optics and image reconstruction

approach outperforms all of these methods in SSIM. Deep digital zoom

methods achieve higher PSNR for the Urban100 dataset by exploiting image

priors to interpolate textured regions.

DOE, which limits the contrast of our measurements compared to

a conventional lens (Figure 9, top left). Due to the fact that our

method relies on aliasing in these copies, which are effects that are

smaller than a single pixel, any deviations of the optical PSF from

the simulated PSF make this a very challenging experiment. Yet, as

shown in Figure 9, the proposed DOE and reconstruction restores

image detail that is lost with digital zoom techniques such as bicubic

upsampling or a state-of-the-art LapSRN super-resolution network.

6 FABRICATING CUSTOM OPTICS

We have employed two fabrication methods to manufacture our

optimized lenses. The resulting products are noted as diffractive

optical elements and freeform lenses in the following.

Fabricating Diffractive Optical Elements (DOEs). We repeatedly ap-

ply 4 rounds (i.e. 16-phase-level structures) of photolithography and

reactive iron etching techniques [Morgan et al. 2004] to fabricate op-

tics that are optimized with Fourier coefficient parameterizations of

the discretized height map. The substrate is a 0.5mm thick, fused sil-

ica wafer with a refractive index of 1.459 at the principle wavelength

of 550 nm. We use 2π phase modulation to wrap the height map

to a uniform maximum height. Please refer to the supplement for

details of the fabrication procedure as well as microscope images of

our lenses. We note that this kind of micro-fabrication technique in-

volves repeated procedures at micrometer level alignment accuracy.

Such precise alignment makes the fabrication procedure relatively

complex, but opens up a large design space by allowing many small

features and high-frequency detail on the DOE [Peng et al. 2016].

Fabricating Refractive Freeform Lenses. In addition, we use a CNC

machining platform that supports 5-axis single point diamond turn-

ing (Nanotech 350FG), similar to [Damberg and Heidrich 2015;

Schwartzburg et al. 2014; Wu et al. 2013], to fabricate lenses that are

parameterized using a Zernike polynomial basis. The substrate is

polymethyl methacrylate (PMMA) with a refractive index of 1.493

at the principle wavelength of 550 nm. The downside of freeform

lenses relative to DOEs manufactured with photolithography is a

larger form factor and less design freedom due to the need for a

smooth surface to mill, but the upside is that the freeform lens has

less inherent color dispersion, much higher light efficiency, and

much lower production cost.

System Integration. We use two sensors, one chromatic sensor

(FLIR GS3-23S6C-C) that has 1,920×1,200 pixels with a pixel pitch of

5.86 µm, and one monochromatic sensor (FLIR GS3-91S6M-C) that

has 3,376×2,704 pixels with a pixel pitch of 3.69 µm in our experi-

ments. The former is used for AEDOF imaging (Section 4) while the

latter is used for snapshot super-resolution imaging (Section 5). The

focal distance of the AEDOF and superresolution optical elements is

35.5mm with an aperture size of 5mm. This yields an f-number of

f /7.1. As discussed in Section 3, our non-blind image reconstruction

method requires us to calibrate the PSF in advance. Accordingly, we

use a white LED light source with a 35 µm pinhole attached in front

to calibrate the PSFs of our custom lenses.

7 DISCUSSION

In summary, we demonstrate that the co-design of camera optics

and reconstruction is feasible using a fully-differentiable pipeline

that includes a wave optics model for the image formation and a

regularized least-squares image reconstruction. We explore differ-

ent parameterizations for the optimized optical elements, including

height maps or Zernike polynomials, and we verify the principle

of operation of our optimized elements with fabricated optical el-

ements. We demonstrate state-of-the-art results of the proposed

framework for applications in achromatic extended depth of field

and snapshot super-resolution imaging.
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The primary benefit of the proposed methodology is that optical

elements can be jointly optimized with post-processing algorithms

to minimize differentiable losses that only consider the performance

of the joint model, with no optimization of intermediate steps such

as point spread function engineering. The proposed framework

takes advantage of hardware, tools and algorithms developed in

the deep learning community, allowing easy customization and

profiting from hardware and software progress in that field.

There are several limitations of our current approach. First, the

algorithms we used for image reconstructions are simple. We ei-

ther use a Wiener filter or a truncated set of conjugate gradient

iterations. While this is adequate for the presented applications, it

seems insufficient for more advanced tasks, such as high dynamic

range imaging, depth from defocus, image classification, semantic

segmentation, etc. Second, we currently approximate the tolerances

of the respective fabrication methods by simply optimizing the op-

tical elements in one of two basis representations, a Fourier basis or

a Zernike basis. These tolerances should be better quantified and

modeled as constraints in the optimization. Third, even though our

image formation model includes depth variation, it does not handle

occlusion boundaries between objects at different depths appropri-

ately. We optimize the extended depth of field phase profiles by

randomly sampling depth values of the planar input images during

optimization. A more precise image formation model, such as ray

tracing, may further improve results and enable new applications.

Future Work. In future work, we would like to explore more so-

phisticated differentiable reconstruction methods, such as convolu-

tional neural networks. Advanced computational camera designs,

for example tailored to higher-level vision tasks, likely require deep

algorithmic frameworks. We would also like to explore otherwise

inaccessible parts of the camera design spectrum, for example by

minimizing the device form factor or overcoming fundamental limits

of conventional cameras. Finally, designing multiple sensors jointly

could open new research directions as the proposed end-to-end

framework naturally extends to such systems with an appropriate

image formation model.

8 CONCLUSION

End-to-end optimization is an emerging design paradigm for com-

putational cameras. Although the idea of jointly optimizing camera

optics, sensing, and algorithms has been at the heart of the com-

putational photography community for years, leveraging modern

tools of the deep learning community for this problem opens new

research directions and has the potential to make unprecedented

camera designs possible. With our work, we demonstrate the effi-

cacy of the end-to-end computational camera design paradigm for

addressing challenging imaging problems. These results encourage

the exploration of more advanced end-to-end frameworks, for exam-

ple using convolutional neural networks, in future computational

cameras.
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A OPTIMIZATION PARAMETERS

In the following, we describe the exact parameters used to optimize

the optical elements described in this work.

A.1 Achromatic Extended Depth of Field

A.1.1 Zernike parameterization. We simulate a sensor with a

pixel size of 3.69 µm and a resolution of 1, 356 × 1, 356 pixels. We

consider the first 350 Zernike coefficients in Noll notation. The

optical element is initialized as a standard collimator lens, with the

fourth Zernike coefficient (the defocus term) initialized such that the

lens has a focal length of 35.5mm. The optical element is discretized

with a 3.69 µm feature size on a 1, 356 × 1, 356 grid. In the learning

phase, which includes optimizing the optical element and finding

the optimal regularization parameter γ for the reconstruction, we

use the Adadelta optimizer with a step size of 1. The optimization

phase is run for 8 epochs, which takes approximately 6 hours on a

single NVIDIA TITAN X Pascal GPU.

A.1.2 Fourier coefficient parameterization. We simulate a sensor

with a pixel size of 4 µm and a resolution of 1, 248 × 1, 248 pixels.

We set the 37.5% highest frequencies to zero as a smoothness prior.

All Fourier coefficients are initialized to zero at the beginning of

the optimization. The optical element is discretized with a 2 µm

feature size on a 2, 496 × 2, 496 grid. In the learning phase, which

includes optimizing the optical element and finding the optimal

regularization parameter γ for the reconstruction, we use a step

size of 5 × 10−1 with a stochastic gradient descent solver using a

Nesterov momentum term of 0.5. The optimization phase is run for

64 epochs, which takes approximately 4 hours on a single NVIDIA

TITAN X Pascal GPU.

A.2 Snapshot Super-Resolution Imaging

We simulate a sensor with a pixel size of 3.69 µm and a resolution of

1, 356 × 1, 356 pixels, which we downsample by a factor of 2× using

area interpolation to simulate larger pixels. The optical element is

discretized with a 2.46 µm feature size on a 2, 034 × 2, 034 grid. The

PSF is subsequently downsampled to a 3.69 µm resolution following

Fresnel propagation for computational efficiency. We set the 37.5%

highest frequency Fourier coefficients to zero as a smoothness prior.

All Fourier coefficients are initialized to zero at the beginning of

the optimization. We use Adadelta with a step size of 1 to optimize

the model. The optimization phase is run for 50,000 iterations with

batch size 1, which takes approximately 20 hours on a single NVIDIA

TITAN X Pascal GPU.
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